Analysis of Nonlinear Mathematical Model of COVID-19 via Fractional-Order Piecewise Derivative

نویسندگان

چکیده

Short memory and long terms are excellently explained using the concept of piecewise fractional order derivatives. In this research work, we investigate dynamical systems addressing COVID-19 under equations with derivative (FOD). Here, study sensitivity proposed model by some tools from nonlinear analysis. Additionally, develop a numerical scheme to simulate against various orders Matlab 2016. All results presented graphically.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability analysis of fractional-order nonlinear Systems via Lyapunov method

‎In this paper‎, ‎we study stability of fractional-order nonlinear dynamic systems by means of Lyapunov‎ ‎method‎. ‎To examine the obtained results‎, ‎we employe the developed techniques on test examples‎.

متن کامل

stability analysis of fractional-order nonlinear systems via lyapunov method

‎in this paper‎, ‎we study stability of fractional-order nonlinear dynamic systems by means of lyapunov‎ ‎method‎. ‎to examine the obtained results‎, ‎we employe the developed techniques on test examples‎.

متن کامل

Mathematical Model of Novel COVID-19 and Its Transmission Dynamics

In this paper, we formulated a dynamical model of COVID-19 to describe the transmission dynamics of the disease. The well possedness of the formulated model equations was proved. Both local and global stability of the disease free equilibrium and endemic equilibrium point of the model equation was established using basic reproduction number. The results show that, if the basic reproduction numb...

متن کامل

Analysis of Plane Waves in Anisotropic Magneto-Piezothermoelastic Diffusive Body with Fractional Order Derivative

In this paper the propagation of harmonic plane waves in a homogeneous anisotropic magneto-piezothermoelastic diffusive body with fractional order derivative is studied. The governing equations for a homogeneous transversely isotropic body in the context of the theory of thermoelasticity with diffusion given by Sherief et al. [1] are considered as a special case. It is found that three types of...

متن کامل

Vibration of FG viscoelastic nanobeams due to a periodic heat flux via fractional derivative model

In this work, the vibrations of viscoelastic functionally graded Euler–Bernoulli nanostructure beams are investigated using the fractional-order calculus. It is assumed that the functionally graded nanobeam (FGN) is due to a periodic heat flux. FGN can be considered as nonhomogenous composite structures; with continuous structural changes along the thick- ness of the nanobeam usually, it change...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chaos theory and applications

سال: 2023

ISSN: ['2687-4539']

DOI: https://doi.org/10.51537/chaos.1210461